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Abstract. Fluid-like amphiphilic membranes, in the absence of self-avoidance, are known to 
be crumpled in equilibrium at all non-vanishing temperatures. We propose a timedependent 
Ginzburg-Landau approach to investigate the kinetics of 'disordering' of  such a membrane 
at a non-zero temperature starting from an artificially prepared Rat conf6rmation. We carry 
out a dynamic renormalization group analysis by exploiting some similarities between the 
crumpling process and the phenomenon of phase separation in binary alloys. The similarities 
and diKerences between this crumpling process and the phenomenon of roughening of 
crystal surfaces heated above the roughening temperature are also pointed out. 

Amphiphilic membranes consist of amphiphilic molecules. Each of these amphiphilic 
molecules consist of a hydrophilic head and a hydrophobic tail; the hydrophilic head 
likes to be in contact with water whereas the hydrophobic tail tends to minimize contact 
with water (Tanford 1973, Israelachvili 1985). The amphiphilic membranes may consist 
of a single monolayer of the amphiphilic molecules (e.g. that at the interface between 
oil and water in a microemulsion) or a bilayer (e.g. the plasma membrane of a red 
blood cell). The out-of-plane thermal fluctuations of these membrances (see Petrov and 
Bivas 1984, Schneider and Webb 1987, Nelson et al 1988, Helfrich 1990, Mitov et a1 
1992 for reviews) and the effects of these fluctuations on the equilibrium phases of 
amphiphile-containing complex fluids (see Gelbert ef  af 1992 for reviews) have received 
attention over the last few years. One of the interesting phenomena is that of crumpling 
of these membranes (Helfrich 1985, Peliti and Leibler 1985). Depending on the nature 
of the in-plane ordering of the membrane, the membrane may crumple at a finite 
temperature or at the zero temperature (see Lipowsky 1991 for a recent review). In 
fact, it is now well established that the fluid-like amphiphilic membranes, in the absence 
of self-avoidance, are crumpled in equilibrium at all non-vanishing temperatures. To 
our knowledge, the dynamical evolution of the conformations of the amphiphilic mem- 
branes far from equilibrium has not been addressed so far in the literature. In tbis 
paper we investigate the kinetics of (dis)ordering of fluid-like amphiphilic membranes 
starting from~an initial conformation where the membrane is prepared in a flat phase. 
We exploit some striking similarities between this phenomenon and the phenomenon 
of phase separation in binary alloys and carry out a dynamic renormalization group 
analysis. Finally, we also point out the crucial differences between this phenomenon 
and that of roughening of crystal surfaces heated to temperatures above the roughening 
temperature. 

We describe the undulations by a single-valued height function Z ( x , ,  x2) in the 
standard solid-on-solid approximation (i.e. we neglect all overhangs). We define the 
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unit vector 

n(x l ,  x2) =(-az/ax,,-az/ax,, 1) 

along the normal to the membrane. The bending energy can be expressed in terms of 
these normal vectors as a Heisenberg-like Hamiltonian (Nelson et al 1988). 

where is a microscopic bending rigidity. From the equilibrium statistical mechanical 
treatment of the out-of-plane thermal fluctuations of the membranes one finds (de 
Gennes and Taupin 1982) 

(n  (-Q-n(o))>= exp(-lxl/5p) (34  

with the ‘persistence length’ 

&,sa exp(4nK/3kBT) (3b) 

where kB is the Boltzmann constant, 7’ is the temperature and a is a characteristic 
microscopic length scale. Therefore, fluid-like membranes are crumpled at all non- 
vanishing temperatures (see Helfrich 1990, Lipowsky 1991 for reviews). One convenient 
way of characterizing the fluctuations of a membrane is through the orientational 
correlation function G(r), which is defined as 

G(r)= ([VZ(r) -VZ(0)J2>. 

In the limit r - m ,  one obtains 

d < 2  
G(r)- In r d = 2  I rn:tant d>2. 

For distances r>  tp, the SOS description is inconsistent. However, at sufficiently low 
temperatures, &,can be larger than even the system size and, therefore, our SOS descrip- 
tion will remain valid as long as we confine our attention to length scales smaller than 
the persistence length. A comparison with the ordering in binary alloys may be useful. 
At any finite temperature kinetics of the ordering process is monitored to extract the 
growth law as long as the equilibration process continues. Similarly, we are interested 
in the process of equilibration of a membrane and one should monitor this equilibration 
process when the system has not reached the equilibrium state; in equilibrium the size 
of the crumpled regions is of the order of the persistence length. In other words, we 
shall monitor the size R(f) of the growing crumpled regions as long as R(t)<<(5P. 

The Langevin equation describing the relaxation of a conserved order parameter y/ 
is given in the Fourier (momentum) space by (Bray 1989, 1990) 

ci/lv12) ( w a t ) =  - ( a w a w  + ~ t )  (4) 
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where A is a phenomenological rate constant, H is the effective Hamilton (coarse- 
grained free energy functional), and 

m(t )=  Y-”’ ddr y(r, t )  exp(ik.r). s 
Assuming that the cost of the out-of-plane fluctuations of the fluid-like amphiphilic 
membranes comes entirely from the bending stiffness of the membrane, we obtain the 
effective Hamiltonian (coarse-grained free energy functional) 

H=(K/2) d2xIV2Z12 (7) s 
where K is the modulus of bending elasticity and the integration is to be carried out 
over the true area of the membrane. Since we are interested in the crumpling of the 
membrane the appropriate equation describing the relaxation of the order parameter 
in this case is 

8(VZ)/at=-M[6H/6(VZ)] + C(X, t )  (8) 
where M is a phenomenological kinetic coefficient and 5 denotes the thermal noise. For 
simplicity, we assume only Gaussian white noise, i.e. 

(C(x, t)C(x’, t‘))  =2kBTv2s(x-x’)s(r - t‘). (9) 
So far as the coefficient Mis concerned, we assume Moc - V2 so that the order parameter 
is conserved. 

There is a close relation between the phenomena of roughening and crumpling. In 
fact, the effective Hamiltonian for both interfaces and membranes is given by 

d2ijVpZ12;p= 1 describes interfaces whereasp=2 corresponds with amphiphilic mem- 
branes. It is quite straightforward to check that all crumpled membranes are rough 
with a roughening exponent larger than unity (Lipowsky 1990). The phenomenon of 
roughening has been investigated in great detail over the last 15 years (see Van Beijren 
and Nolden 1987 for a review). In recent years the phenomenon of kinetic roughening 
of growing surfaces has become a very active field of investigation. 

Our equation for the temporal evolution is similar to some of the recently proposed 
equations governing surface growth (Sun et a1 1989, Wolf and Villain 1990, Golubovic 
and Bruinsma 1991, Das Sarma and Tamborenea 1991); all the latter models are 
extensions of what is now known as the KPZ model (Kardar el a1 1986). However, there 
are also some crucial differences between our equation of motion for the order parameter 
and the KPz-type equations mentioned above; the nonlinearities in our equation follows 
from the potential itself unlike the sources of nonlinearities in the KPz-type equations. 

Note that because of the special form (7) of the effective Hamiltonian the equation 
(8) can be written as 

Z(X, t)/at=(~/k2)[-(6H/6Z]+ ((x, t ) .  (10) 
To begin with, let us consider the conserved order parameter because in that case 

both the analytical calculations as well as numerical computations become much 
simpler. We can, in that case, use the dynamic renormalization group proposed by Bray 
(1989, 1990) for the dynamics of phase separation. Besides, if the order parameter is 
conserved, equation (10) further reduces to the simple form 

(~Z(X,  f)/af}=’-[6H/6Z]+ ((x, t ) .  (1 1 )  
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Next let us sketch the main steps in our RG analysis. We make a scale change k-rk' 
and time rescaling f-tf' where 

k =P/b  t=b'r. (12) 
This rescaliig leads to a change of the order parameter yk(f)-ry'y(f') .  In the case of 
phase separation 

S(k, t) -k-"-"g(k't) 

where g is the universal scaling function. But, in the case of membranes 

S(k, I) - k-'4- "g(Ef). 

S(K, r )  = s(k, t ) .  

(13) 

(14) 

Moreover, following Bray (1989, 1990), we impose the constraint that the sttucture 
factor is invariant under the scale transformation (12), i.e. 

This requirement fixes the exponent 5 in the equation 

q/u(r') = b-Sulu/b(b'r') 

namely 

r= (4- m. 
Moreover, the free energy functional scales as 

W{b'v'w} ) = v H ( {  W'W} ). 

y = d - 2 .  (17) 

Since the order parameter under consideration is a vector 

Following Bray's method in the case of a zero-temperature fixed point, we obtain 

2- 2 + 2 ( -  y =o. (18) 
Substituting (15) into (18) we obtain 

(2  -2) + (4 -  q)  - y =O. 
But, in the case of membranes 

and, hence 

z = d + 2 - y .  

Substituting (17) into (21) we obtain 

2=4. (22) 

Now we interpret the main result (22).  Following a reverse quench of a fluid-like 
membrane from the zero temperature to a non-vanishing low temperature the linear 
size of the region over which equilibration takes place in a time t grows as t'l4. In other 
words, the growth law (22) is identical to that in the case of phase separation in systems 
with vector order parameter, in spite of the special form (7) of the coarse-grained free 
energy functional F. 
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The dynamical process of ‘healing’ of rough crystal surfaces cooled rapidly below 
the roughening temperature has been investigated both analytically (Villain 1986) as 
well as through laboratory experiments (Zuo and Wendelken 1993) and computer 
simulation (Selke 1987). In the analytical work Villain (1986) used the terrace-ledge- 
kink model of crystal surfaces and formulated the problem of healing in such a way 
that, at least at the formal level, it became analogous to the problem of phase separation 
in binary alloys. Therefore, Villain used the classic Lifshitz and Slyozov approach 
(Lifshitz and Slyozov 1961) for the latter problem. A step on the crystal surface can 
emit or absorb particles and holes; smaller terraces decay while larger ones grow. 
Villain (1986)~predicted that the surface is flat on length scales smaller than R(t)ccf’”.  
However, it is worth emphasizing that in spite of the superficial similarity between the 
dynamics of roughening (or the reverse process of healing) of crystal surfaces and 
crumpling of amphiphilic membranes the physical mechanisms are quite different; there 
are neither terraces nor steps and kinks on membranes. In this paper we have also 
exploited some formal similarities between the dynamics of crumpling and phase separa- 
tion in binary alloys; both these processes are described by similar Langevin equations. 

As pointed out earlier, equation (11) is equivalent to the original equation (8) for 
the dynamics of the order parameter provided the latter is conserved. Therefore, for a 
numerical test of OUT prediction it may be easier to solve the partial differential equation 
(11) rather than the original equation (8). Moreover, our prediction may be tested 
directly through Monte Carlo simulation. 
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